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École Polytechnique de Montréal, Montréal, Qué., Canada H3T1J4
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Abstract

This paper presents a general monolithic formulation for sensitivity analysis of the steady-state interaction of a

viscous incompressible flow with an elastic structure undergoing large displacements (geometric nonlinearities). The

problem is solved in a direct implicit manner using a Newton–Raphson adaptive finite element method. A pseudo-solid

formulation is used to manage the deformations of the fluid domain. The formulation uses fluid velocity, pressure, and

pseudo-solid displacements as unknowns in the flow domain and displacements in the structural components. The

adaptive formulation is verified on a problem with a closed-form solution. It is then applied to sensitivity analysis of an

elastic cylinder placed in a uniform flow. Sensitivities are used for fast evaluation of nearby problems (i.e. for nearby

values of the parameters) and for cascading uncertainty through the Computational Fluid Dynamics/Computational

Structural Dynamics code to yield uncertainty estimates of the cylinder shape.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Interaction between solids and fluids has been a topic of engineering interest for many years. The behavior of vessels

subject to wave loads, of planes in flight as well as that of submarines or transmission lines in the wind are but a few

examples.

This paper presents a formulation suitable for simulating the interaction between an incompressible flow and a

structure undergoing large displacements and for computing its sensitivities with respect to parameters of interest. We

assume existence and uniqueness of the solution. The interested reader is referred to Dowell and Hall (2001) for a review

of fluid–structure interaction (FSI) and Grandmont (2002), Desjardins and Esteban (2000), for mathematical discussion

of existence and uniqueness. Previous works on sensitivity analysis of FSI are by Lund et al. (2001, 2003), Moller and

Lund (2000), Ghattas and Li (1998) and Fernandez and Moubachir (2001).

In many instances, interaction between fluids and solids is achieved through weak or loose coupling of specialized

softwares. This is very cost-effective because it requires little changes to analysis modules and takes advantage of

expertise of each discipline. Hydrodynamic loads obtained by Computational Fluid Dynamics are transferred to the

structural model to predict solid displacements which are then transferred back to the fluid module until convergence to
e front matter r 2005 Elsevier Ltd. All rights reserved.
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reflect changes in the geometry. Because data transfers are approximate, equilibrium at the interface between solid and

fluid is not perfectly satisfied. Such departures from equilibrium are often magnified to unacceptable levels if the

approach is used in an optimization loop. Sensitivities at the interface may become erroneous. We introduce an implicit

fully coupled (or direct implicit monolithic) formulation that avoids this problem. A pseudo-solid formulation is

introduced to manage in an implicit manner the deformations of the fluid domain. An implicit treatment of the interface

equilibrium achieves monolithic coupling of the fluid and solid problems. This approach delivers quadratic convergence

of Newton’s method and ensures quality solutions field for the sensitivity analysis.

To cope with the deformations of both boundaries and fluid mesh, several techniques have been studied and

discussed in the literature for unstructured meshes. They can be classified in three categories. Firstly, one can remesh the

fluid domain completely, once the deformation of the structure is known, and iterate until convergence (Heil, 1998).

Secondly, one can use a spring analogy (linear and torsional) to move the grid points (Farhat et al., 1998; Degand and

Farhat, 2001) or a Laplacian (Moller and Lund, 2000; Fernandez and Moubachir, 2005). Finally, the pseudo-solid

approach introduces structural-like equations to manage the deformation of the fluid domain at the continuum level

(Sackinger et al., 1996). Such pseudo-solid material laws have been used in various forms (Lohner and Yang, 1996;

Lund et al., 2001, 2003; Chiandussi et al., 2000; Oñate and Garcia, 2001; Nielsen and Anderson, 2001). We have opted

for the pseudo-solid approach of Sackinger et al. (1996) formulated at the continuum level, because it allows for a full

coupling of all components. We go further by solving the fluid, structural and pseudo-solid equations in an implicit fully

coupled manner, which results in an implicit monolithic method. Such a formulation is also compatible with our general

approach for error estimation and mesh adaptation procedures. Finally, using this approach, sensitivities are straight-

forward to obtain and implement by the sensitivity equation method (SEM).

Approaches to sensitivity computations differ depending on the order of the operations of discretization and

differentiation. In the discrete sensitivities approach, the total derivative of the computational model with respect to the

parameter is calculated (Haug et al., 1986), whereas in the continuous sensitivity equation (CSE) method one

differentiates the continuum equations to yield differential equations for the sensitivities (Borggaard and Burns, 1997).

Note that sensitivity analysis is more advanced in structural mechanics than in fluid mechanics (Haug et al., 1986;

Borggaard and Burns, 1997). Furthermore, there is a paucity of literature on sensitivity analysis of fluid–structure

interaction. Ghattas and Li (1998) use the discrete SEM and exploit the Newton-like method developed for the

fluid–structure equations to solve the fluid–structure sensitivity equations. They iterate between the solid and the fluid

meshes, as terms coupling the solid displacements to the fluid have been neglected. These terms would naturally arise

from the coupling between pseudo-solid/fluid and solid/pseudo-solid. Since Ghattas and Li (1998) do not use a pseudo-

solid approach, the coupling of tractions at the interface cannot be treated implicitly. Thus, the sensitivity solution can

only be obtained iteratively. The work of Lund et al. (2001) uses an iterative hybrid approach in which part of the

sensitivity formulation is discrete while the other is continuous. Additional simplifications are also made to the global

system. This hybrid approach has been applied to the optimal design of flexible structures undergoing large

displacements induced by the flow (Lund et al., 2001, 2003). The present work avoids this approximation through the

monolithic coupling approach to the fluid–structure problem. In this paper, we present a fully CSE method derived

from the pseudo-solid formulation of the fluid–structure interaction problem. The sensitivity problem shares many

similarities with the fluid–structure problem.

The paper begins with the description of the steady-state governing equations for laminar incompressible fluids,

hyperelastic solid behavior, pseudo-solid material law, fluid–structure interface equilibrium. Then sensitivity equations

are derived. The weak forms of the equations are then presented. The next sections detail the solution procedure for

coupling the fluid and solid domains, the adaptive finite element procedure for the fluid–structure interaction problem

and some specific aspects related to mesh management. The methodology is verified on a problem with a closed-form

solution. It is then applied to sensitivity and uncertainty analysis for a flexible cylinder in a uniform flow. We also

illustrate the use of sensitivity information for fast evaluation of nearby problems (i.e. for nearby values of the

parameters) and for uncertainty analysis. The paper ends with conclusions.
2. Governing equations

The steady flow of an incompressible fluid is described by the continuity and momentum equations (Schlichting,

1979),

r � uf ¼ 0, (1)

rf uf � ruf ¼ r � rf þ ff , (2)
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where rf is the fluid density, uf is the fluid velocity, rf is the total fluid stress tensor (pressure and viscous forces), and ff

is a body force. Eqs. (1) and (2) are expressed in an Eulerian frame of reference. Assuming that the fluid behaves in a

Newtonian way, its constitutive equation is given by

rf ¼ mf ½ruf þ ðruf Þ
T
� 	 pI, (3)

where mf is the dynamic viscosity and p is the fluid pressure. The flow equations are closed with the following boundary

conditions:

rf � n ¼ tf on Gf
N , (4)

uf ¼ uf on Gf
D, (5)

where Gf
N denotes a boundary where Neumann conditions are applied in the form of a prescribed traction tf , and Gf

D

corresponds to a Dirichlet boundary on which the velocity, uf , is imposed. Notation for the deformed and undeformed

configurations is depicted on Fig. 1.

A total Lagrangian formulation is ideally suited for the structural components (Dubigeon, 1992; Bathe, 1982).

Indeed, it is easier to deal with an undeformed geometry than with a deformed one. In that context, three stress tensors

arise. The Piola–Kirchoff (or 2nd Piola–Kirchoff) stress tensor, rk, corresponds to stresses on the undeformed

configuration in terms of the undeformed surface. The Piola–Lagrange (or 1st Piola–Kirchoff) stress tensor, rl ,

corresponds to stresses on the deformed configuration in terms of the undeformed surface. Finally, the Cauchy stress

tensor, rc, corresponds to stresses on the deformed configuration in terms of the deformed surface. We introduce the

deformation gradient tensor F,

F ¼ Iþ h, (6)

where h ¼ rv represents the displacement gradient tensor expressed on the undeformed or initial configuration

(v ¼ xex þ Zey is the displacement). The Piola–Lagrange and Piola–Kirchoff tensors are related by

rl ¼ Frk, (7)

while the Cauchy and Piola–Kirchoff stress tensors are related by

rc ¼
FrkF

T

J
, (8)

with J ¼ detðFÞ being the Jacobian of the transformation. The solid is assumed hyperelastic, isotropic and described by

a St. Venant–Kirchoff material,

rk ¼ ls trðEÞIþ 2msE, (9)
(a) (b)

Fig. 1. Notations for the coupled fluid–structure problem: (a) undeformed state and (b) deformed state.
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where ls and ms are the Lamé constants. The Green–Lagrange strain tensor E is defined by

E ¼ 1
2
ðhþ hT þ hThÞ. (10)

In the total Lagrangian approach, differential equilibrium equations are expressed on the initial undeformed

configuration

r � rl þ fs ¼ 0 (11)

and supplemented by the following boundary conditions:

rl � n ¼ ts on Gs
N , (12)

vs ¼ vs on Gs
D, (13)

where Gs
N denotes a Neumann boundary with a prescribed surface traction ts, and Gs

D denotes a Dirichlet boundary

with a prescribed displacement vs.

To manage the deformation of the fluid domain, we apply the pseudo-solid approach of Sackinger et al. (1996) who

used it for free-surface flows in forming processes:

r � r
ps
l ¼ 0, (14)

r
ps
l ¼ r

ps
k , (15)

Eps ¼ 1
2
½hps þ ðhpsÞT�, (16)

r
ps
k ¼ lps trðEpsÞIþ 2mpsE

ps, (17)

where lps and mps are the pseudo-solid Lamé constants. These equations are supplemented by the following boundary

conditions:

vps ¼ 0 on CGI
ðGÞ. (18)

The pseudo-solid has never been used in FSI. The role of the pseudo-solid is to provide physics-based rules for

deforming the fluid domain, given the structural displacements at the solid–fluid interface. These equations are solved in

the fluid domain coupled to the Navier–Stokes equations and to the structural equations at the interface location. Note

that it is not compulsory to impose continuity of surface tractions at the interface between the solid and the pseudo-

solid.

Coupling between the fluid and the solid is enforced through kinematic and equilibrium conditions: continuity of

interface displacements, velocity (no-slip), and continuity of fluid and solid surface forces:

vps ¼ vs on GI , (19)

uf ¼ us ¼ 0 on GI , (20)

rc � ns þ rf � nf ¼ 0 on GI , (21)

where ns is the outward unit normal to the solid at the solid–fluid interface in the deformed configuration, nf ¼ 	ns, and

us is the solid velocity. For the steady-state problems considered here, the interface velocity is prescribed to be zero. The

stresses r are Cauchy stresses, i.e. expressed on the deformed configuration in terms of the deformed surface.
3. Sensitivity equations

Following a general approach (Turgeon et al., 2001), the CSE are derived formally by implicit differentiation of the

fluid, pseudo-solid and structural equations with respect to parameter a which could be a boundary condition, a

geometric characteristic, a physical property of the material or fluid, or a coefficient in a constitutive equation. We treat

the flow and structural variables ðu; p; vÞ as functions of space, and as functions of the parameter a. This dependency is

denoted by uðx; aÞ; pðx; aÞ and vðx; aÞ. We define the sensitivities as the partial derivatives su ¼ qu=qa, sp ¼ qp=qa and

sw ¼ qv=qa. We denote the derivative of the other coefficients by a prime.
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We obtain the fluid sensitivity equations by implicit differentiation of Eqs. (1) and (2),

r0f uf � ruf þ rf suf
� ruf þ rf uf � rsuf

¼ r � r0
f þ f 0, (22)

r � suf
¼ 0. (23)

Similarly, we obtain the structural sensitivity equations by implicit differentiation of Eqs. (6)–(10),

r � r0
l þ f 0s ¼ 0, (24)

h0 ¼ rsws
, (25)

F0 ¼ h0. (26)

The sensitivity of the Green–Lagrange tensor is

E0 ¼ 1
2
ðh0 þ ðhTÞ0 þ ðhTÞ0hþ ðhTÞh0Þ, (27)

while the sensitivities of the stress tensors are

r0
k ¼ l0s trðEÞIþ 2m0sEþ ls trðE

0ÞIþ 2msE
0, (28)

r0
l ¼ F0rk þ Fr0

k. (29)

We obtain the pseudo-solid sensitivity equations by implicit differentiation of Eqs. (15)–(17),

r
ps0

k ¼ l0ps trðE
psÞIþ 2m0psE

ps þ lps trðEps0 ÞIþ 2mpsE
ps0 , (30)

r
ps0

l ¼ r
ps0

k . (31)

The sensitivity of the strain rate tensor is

Eps0 ¼ 1
2
½hps

0

þ ðhpsÞT
0

�. (32)

Essential and natural boundary conditions for the sensitivities are obtained in a similar manner. For brevity we

provide details for the fluid–structure interface conditions only.

Differentiation of Eq. (19) yields

swps ¼ sws
on GI0 . (33)

Differentiation of the interface equilibrium conditions (20), (21) must account for the changes of the interface

geometry caused by changes in the value of parameter a. This amounts to imposing that the material derivatives of the

structural and fluid velocities be zero at the interface. Differentiation of Eq. (20) leads to

Duf

Da
¼

Dus

Da
¼ 0 on GI1 , (34)

which yields

suf
¼ 	

quf

qx
sx 	

quf

qy
sZ on GI1 , (35)

sus ¼ 0 on GI1 . (36)

Finally, differentiation of Eq. (21) yields an equilibrium condition between the sensitivities of the interface traction

forces,

D

Da
½rc � ns� þ

D

Da
½rf � nf � ¼ 0 on GI1 . (37)

We now provide some details. Consider an infinitesimal surface dG on which quantities expressed in Eq. (21) are

constant. We use the Nanson formula ns1dG1 ¼ JF	T
ps � ns0dG0 with J ¼ detðFpsÞ to express the quantities in terms of

undeformed geometry to yield the following sensitivity equilibrium equation:

r0
l � n

s
0dG0 þ ½ðr0

f þ rrf � swÞ � JF	T
ps þ rf � ðJF

	T
ps Þ

0
� � ns

0dG0 ¼ 0. (38)

Note that in the present case, ns
0dG0 and n

f
0dG0 are independent of parameter a since the original geometry G0 is

unaffected by changes in a. Because the Eulerian formulation is used for the fluid, it is natural to compute fluid
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sensitivities on the deformed configuration. Using the Nanson formula again leads to

r0
l � n

s
0dG0 þ ½ðr0

f þ rrf � swÞ þ rf � ðJF
	T
ps Þ

0
� J	1FT

ps� � n
s
1dG1 ¼ 0. (39)

Thus, the pseudo-solid leads to a simpler treatment of interface conditions.
4. Weak form of the fluid–structure interaction

The weak forms of the boundary-value problems are generated with the classical Galerkin finite element method. For

the momentum (2) and continuity (1) equations we have

Z
Of
1

ðw � rf uf � ruf þrw : rÞdO ¼

Z
Gf

N1
[Gf

I1

w � ðrf � n
f
1ÞdGþ

Z
Of
1

w � ff dO, (40)

Z
Of
1

cr � uf dO ¼ 0, (41)

in which Of
1, GN1

and GI1 are the fluid domain, its Neumann boundary and the fluid–solid interface; w and c are test

functions. The natural boundary conditions are the prescribed tractions expressed in terms of the Cauchy stress tensor

rf . The weak form of the structural equilibrium Eq. (11) is

Z
Os
0

ðrr : rl 	 r � fsÞdO ¼

Z
Gs

N0
[GI0

r � ðrl � n
s
0ÞdG. (42)

Here, the natural boundary condition is expressed in terms of the Piola–Lagrange tensor as opposed to the Cauchy

stress tensor appearing in Eq. (40). Os
0 and GI0 correspond to the solid domain and fluid–solid interface in their

undeformed configurations. This reflects the fact that the natural frames of reference for the flow and the structure are

different: a Lagrangian formulation for the solid and an Eulerian formulation for the fluid equations. This difference

must be taken into account later in the treatment of the interface. The weak form of the pseudo-solid equilibrium

equations is

Z
Os
0

ðrr : rpsl ÞdO ¼

Z
Gs

N0

r � ðrpsl � n
s
0ÞdG. (43)

Here too, the natural boundary condition is expressed in terms of the Piola–Lagrange tensor as in Eq. (42). Notice too

that integration is performed on the undeformed configuration because of the Lagrangian treatment of the pseudo-

solid.

Monolithic coupling between the solid, pseudo-solid and fluid equations is achieved through an implicit weak form of

the interface equilibrium equations. This couples the flow, solid and pseudo-solid equations in a single global system of

equations. This results in an implementation using zero thickness elements for discretizing the fluid–solid interface. A

weighted residual formulation of the solid–fluid interface force equilibrium yields

Z
GI1

w � ðrc � n
s
1 þ rf � n

f
1ÞdG ¼ 0, (44)

which (through a suitable change of variable in the solid part) can advantageously be transformed to

Z
GI0

r � rl � n
s
0 dGþ

Z
GI1

w � rf � n
f
1 dG ¼ 0. (45)

In Eq. (45), the first term is the solid contribution expressed on the undeformed configuration and the second term is the

fluid contribution expressed on the deformed mesh. These expressions match naturally those appearing in Eqs. (4) and

(40), (12) and (42), (21) and (43). Finally, we implicitly impose the equality in a strong sense of pseudo-structural

displacements with those of the structural displacements along the fluid–solid interface (18),

vps ¼ vs on GI . (46)
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5. Weak form of the fluid–structure sensitivity problem

The weak forms of the boundary-value problem for the sensitivities are generated in a similar manner. We retain the

notation from the previous section. It is worth noting that the fluid–structure and sensitivity global systems share the

same data structure (same nonzero coefficients and skylines).

The weak form for the momentum and continuity sensitivity Eqs. (22) and (23) is given by

Z
Of
1

ðw � r0f suf
� ruf þ w � rf suf

� ruf þ w � rf uf � ru
0
f þ rw : r0

f ÞdO

¼

Z
GN1

[GI1

w � ðr0
f � n

f
1ÞdGþ

Z
Of
1

w � f 0f dO, ð47Þ

Z
Of
1

cr � suf
dO ¼ 0. (48)

Note that the natural boundary conditions for this weak form are the prescribed tractions expressed in terms of the

sensitivity of the Cauchy stress tensor r0
f . This problem is best viewed as a shape sensitivity problem. The interface will

move, even for parameters traditionally classified as value parameters. For example, changes in inflow boundary

condition will induce changes in the shape of the interface. For steady problems, interface fluid velocities are zero.

Differentiation of Dirichlet boundary condition on velocities sensitivities yields (Eq. 35).

suf
¼ 	ru � sw. (49)

Secondly, the weak form of the solid sensitivity equations is

Z
Os
0

ðrr : r0
l 	 r � f 0sÞdO ¼

Z
Gs

N0
[GI0

r � ðr0
l � n

s
0ÞdG, (50)

which is equivalent to the Galerkin weak form. Note that as was the case for the structural Eq. (43), the natural

boundary condition is expressed in terms of sensitivity of the Piola–Lagrange stress tensor, as opposed to that of the

Cauchy stress tensor appearing in Eq. (47) for the flow sensitivities.

Thirdly, the weak form of the pseudo-solid sensitivity equations is

Z
Os
0

ðrr : r0
psl
ÞdO ¼

Z
Gs

N0
[GI0

r � ðr0
psl

� ns
0ÞdG, (51)

which is equivalent to the Galerkin weak form. Here too, the natural boundary condition is expressed in terms of the

Piola–Lagrange as in Eq. (42) for the structural equations.

Coupling between the solid, pseudo-solid and fluid sensitivity equations is achieved through implicit differentiation of

the interface conditions. We directly and implicitly impose the equality of pseudo-solid displacement sensitivities and of

the structural displacement sensitivities by making use of Eq. (33) in strong form. Also, we directly set the essential

sensitivity boundary conditions on the velocities by making use of Eqs. (35) and (36) in strong form. The solid velocity

sensitivities are zero since we are solving a steady-state problem,

Z
GI0

r � fr0
l � n

s
0 þ ½ðr0

f þ rrf � swÞ � JF	T
ps þ rf � ðJF

	T
ps Þ

0
� � n

f
0gdG ¼ 0, (52)

which is equivalent to

Z
GI0

r � r0
l � n

s
0 dGþ

Z
GI1

w � ½ðr0
f þ rrf � swÞ þ rf � ðJF

	T
ps Þ

0
� J	1FT

ps� � n
s
1dG1 ¼ 0. (53)

In Eq. (53), the first term is the solid contribution expressed on the undeformed configuration and the second term is the

fluid contribution expressed on the deformed geometry. These expressions match naturally the boundary integrals

appearing in Eq. (39). In the fluid contribution, the two last terms correspond to a transpiration term and a normal

sensitivity term.
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6. Solution strategy

The monolithic solution strategy couples all degrees of freedom: velocities, pressure, along with pseudo-solid and

structural displacements. This approach requires that all boundary conditions and interface loadings be treated

implicitly as illustrated in matrix form on Fig. 2. We make three key observations.
(a)
 The boundary conditions of the pseudo-solid equations are of Dirichlet type and set equal to the structural

boundary displacements vps ¼ vs (row 6 of the matrix on Fig. 2).
(b)
 Linearization of the pseudo-solid equations must be done with care to account for all implicit dependencies and

achieve quadratic convergence of Newton’s method (Etienne and Pelletier, 2004).
(c)
 The fluid loads are applied to the structure by introducing the nodal reactions as implicit unknowns to the problem

[an implicit version of the so-called reaction method of Dhatt and Touzot (1981)]. Since velocities are known at the

interface (they are zero), we can write equations for the boundary nodal loads or reactions (rows 4 and 8 of the

matrix on Fig. 2) and include them as unknowns in the system (Etienne and Pelletier, 2004).
These operations are implemented simply and in a straight forward manner through interface elements enforcing

relations (45) and (46), see Fig. 3. The interface element on the left guarantees continuity of the displacements in both

the solid and fluid domains (vps ¼ vs). The interface element sketched on the right guarantees equilibrium of fluid and
Fig. 2. Global matrix structure.

Fig. 3. Interface elements used for the fluid and solid problems coupling.
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solid forces along the interface. The resulting global system matrix, shown on Fig. 2, illustrates the coupling between the

various unknowns. In this figure, uf , pf , vps are the velocity, pressure and the pseudo-solid displacements in the fluid

domain, uintf , rintf are the fluid velocity and reactions on the interface, vintps , vints are the pseudo-solid and solid

displacements along the interface, uints , rints are the solid velocities and reactions on the interface, and vs, us are the

displacements and velocities in the solid. The shaded blocks represent contributions from the various weak forms.

Identity matrices indicate that continuity of unknowns is enforced in strong form at the interface.

Rows 1 and 2 correspond to the momentum and continuity equations. Row 3 expresses continuity of interface

velocities. Row 4 is the implicit relation between the fluid reactions and other unknowns (uf , pf , vps, u
int
f and vintps ). Row 5

corresponds to the pseudo-solid displacement equations, row 6 to the continuity of interface displacements. Row 7 is

the implicit relation between the solid reactions and other unknowns. Row 8 reflects continuity of fluid and solid forces

at the fluid–solid interface. Row 9 expresses the interface velocities for the structure in terms of the solid displacements

and velocities. In row 10 are the solid displacement equations and in row 11 the solid velocity equations. Note that for

steady-state, the solid and the interface velocities are zero.

Starting iterations from a zero initial field for all variables, we apply 2–3 steps of successive substitution, a simple

linearization of the fluid convective terms and of the nonlinear part of the Euler–Lagrange strain tensor. This provides a

good initial estimate of the solution to ensure convergence of Newton’s Method. The proposed monolithic formulation

leads to quadratic convergence of Newton’s method. This is achieved at the cost of an increase in the number of

unknowns and size of global matrix compared to a decoupled approach due to the introduction of the pseudo-solid

displacements and use of an implicit, fully coupled treatment of the overall system of equations. This is largely

compensated by the significant reduction in the number of Newton iterations, which results in CPU time savings. As

mentioned previously, the above observations also apply to the monolithic formulation for the sensitivity equations.
7. Adaptive finite element procedure

The velocity and displacement fields along with their sensitivities are discretized using 6-noded quadratic elements.

Fluid pressure and its sensitivity are discretized by piecewise linear continuous functions. The equations are linearized

by Newton’s method, assembled in a skyline structure and solved by Gaussian elimination.

Error estimates are obtained for all solution fields (velocity, pressure, solid and pseudo-solid displacements and all

sensitivities of interest) by a Zhu–Zienkiewicz local projection error estimator (Zienkiewicz and Zhu, 1992a, b). It

involves post-processing of the fluid viscous stress tensor sf ¼ mf ½ruþ ðruÞT� and the linear portion of the structural

stress tensor rl ¼ ls trðElÞIþ 2msEl with El ¼ ðhþ hTÞ=2. The method is based on the observation that while the true

stresses are continuous throughout the fluid and solid domains, respectively, the finite element stresses are

discontinuous across element faces. The theory of finite element also states that stresses converge to their true values

as the mesh is refined. Hence, a measure of the quality of the solution can be obtained by computing the norms of

ðsh
f 	 sexf Þ and ðrh

l 	 rex
l Þ, where superscripts refer to the finite element and exact stresses. Unfortunately, the exact

solution is not available in practice. However, it has been shown that the exact stresses can be replaced by a continuous

approximation obtained by local least-squares projection, as described by Zienkiewicz and Zhu (1992a, b). The local

projection method consists in solving local problems defined on a patch of elements Os (see Fig. 4) to recover the nodal

values of the derivatives. For the case of quadratic elements, we consider a polynomial expansion of degree two

s� ¼ Pa, where P ¼ h1; x; y; x2; xy; y2i and a ¼ ha0; a1; a2; a3; a4; a5i
T,for each vertex node and each stress tensor

component. The coefficients ai are obtained for each component of the stress tensor by minimizing the following
Fig. 4. Local projection patch.
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integral defined over the patch of elements surrounding the vertex node:Z
Os

ðsh 	 s�Þ
2 dO, (54)

which leads to the following system:Z
Os

PPT dO � a ¼

Z
Os

Psh dO. (55)

A unique definition ~s is recovered in the form of a quadratic interpolant of the nodal evaluation of the s� associated to

element vertices. Energy norms of the error estimator and true errors are computed as follows:

keuk
2
E ¼

Z
OE

ð~sf 	 sh
f Þ : ð~sf 	 sh

f ÞdO, (56)

kevk
2
E ¼

Z
OE

ð ~rl 	 rh
l Þ : ð ~rl 	 rh

l ÞdO, (57)

ketrueu k2E ¼

Z
OE

ðsexf 	 sh
f Þ : ðs

ex
f 	 sh

f ÞdO, (58)

ketruev k2E ¼

Z
OE

ðrex
l 	 rh

l Þ : ðr
ex
l 	 rh

l ÞdO, (59)

with OE designating the element area. Notice that the true error makes sense only for analytical solutions of the

equations or for manufactured solutions (see Section 9).

In our approach all variables and their sensitivities are analyzed and contribute to the mesh adaptation process. For

this, an error estimate is obtained separately for all dependent variables and their sensitivities. Once the error estimates

for the flow and its sensitivities are obtained for all variables, a better mesh is designed. The principle of equi-

distribution of the error is combined to the asymptotic rate of convergence of the finite element method to determine the

element size distribution for the improved mesh. The strategy attempts to reduce the global norm of the error by a

predetermined factor, generally in the range of 2–3, between each adaptive cycle. The mesh characteristics (element size)

on a given element are derived separately for each variable (uf , pf , vps, v and their sensitivities). On each element, the

minimum element size predicted by this analysis is retained as the required mesh size. Details of this algorithm have

been presented previously (Pelletier, 1999).
8. Pseudo-solid displacement remeshing

To avoid grids with distorted fluid cells, we generate the mesh on the deformed configuration with a pseudo-solid

displacement remeshing approach. We proceed in three steps.
(a)
 Firstly, we discretize the boundaries of the domains according to the grid density determined by the error estimates

and grid adaptation procedure and application of inverse solid and pseudo-solid displacement evaluated using the

solution from the previous cycle (see Fig. 5(a)). We then apply the pseudo-solid displacements to the boundaries of

the fluid domain. This yields an approximation of the deformed boundary of the fluid domain since it is determined

using interpolated data from the previous mesh (see Fig. 5(b)).
(b)
 Secondly, once the boundary of the deformed mesh is obtained, we mesh the structural and fluid subdomains (see

Fig. 5(c)) by an advancing front technique using grid density obtained from the solution on the previous mesh. This

yields a mesh which is isotropic in its deformed configuration.
(c)
 Thirdly, we interpolate the solution field from the old mesh to the new mesh in the same way we displaced boundary

nodes to maintain consistency. Note that if the elements are highly stretched at convergence it may be necessary to

proceed with intermediate steps to avoid degenerate or folded elements. This is done by progressively changing the

value of the Young’s modulus. This approach allows for easy treatment of very large displacements.
Fig. 6(a) shows the deformed adapted meshes obtained with regular adaptivity while Fig. 6(b) shows the deformed

adapted meshes obtained with the pseudo-solid displacements remeshing approach. Notice the reduced distortion along
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(a) (b)

Fig. 6. Effect of remeshing procedure on the fluid mesh: (a) regular mesh adaptation and (b) pseudo-solid and solid displacement

remeshing.

(a) (b) (c)

Fig. 5. Pseudo-solid remeshing procedure: (a) undeformed boundary discretization; (b) boundary node displacements and (c) field

discretization.
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the curved boundary obtained with the pseudo-solid remeshing procedure (Fig. 6(b)). Furthermore in this procedure,

we lose no geometrical information about the initial shape of the solid domain from one adaptive cycle to the next. This

is an important advantage since we do not have to reconstruct the shape of deformed structures from the finite element

displacement field.
9. Numerical results

A first example is presented that tests the effects of viscous stresses on the wet boundary of the structure. It is

obtained by the Method of Manufactured Solution (MMS) (Roache, 1998) which provides a rigorous framework for

verification of the code. We develop a solution that effectively tests all terms appearing in the equations. This MMS

provides a closed-form solution to verify the exactness of the finite element procedure and the theoretical rate of

convergence. We then apply our approach to an elastic cylinder immersed in a uniform transverse flow, for which we

illustrate the use of sensitivities.
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9.1. Manufactured solution

We pick a manufactured solution which satisfies the continuity equation in the fluid part and continuity of tractions

and displacements at the fluid–solid interface. In general, this field will not satisfy the momentum equations for the fluid

and the stress equilibrium for the solid. Source terms are added to the momentum and solid stress equations to ensure

equilibrium (Roache, 1998). We use the following manufactured solutions in the solid and fluid regions.

vm ¼ 2 sinðaÞ
r2e
r
½	 sinðaÞer þ cosðaÞey�, (60)

um ¼ sinðaÞftanh½aðr 	 riÞ� þ tanh½aðre 	 rÞ� 	 tanh½aðre 	 riÞ�gey, (61)

mf m
¼ 	2 cosðaÞ½8 sinðaÞ2 þ 1�=½	a tanhð2aÞ2�, (62)

pm ¼ 	4 sinðaÞ2½1	 4 sinðaÞ2�, (63)

rm ¼ 1, (64)

Em ¼ 1, (65)

nm ¼ 0, (66)

lsm ¼ Emnm=ð1þ nmÞ=ð1	 2nmÞ, (67)

msm
¼ Em=ð2þ 2nmÞ. (68)

The source terms required for momentum and solid stress equilibrium are computed as

ff ¼ rpm þ rmðum � rÞum 	 mf m
r � ½rum þ ðrumÞ

T
�, (69)

fs ¼ 	Fmr � ðlsm trðEmÞ þ 2msm
EmÞ, (70)

where

hm ¼ rvm, (71)

Fm ¼ I þ hm, (72)

Em ¼ 1
2
ðhm þ hTm þ hmh

T
mÞ (73)

with ri the internal radius, re the interface radius. Notations and boundary conditions are depicted on Fig. 7. We use

Eqs. (69) and (70) as source terms in Eqs. (2) and (11). For given values of the parameter a and hydrostatic pressure pf ,

there exists one shape of the angular velocity uy. The sharpness of the front in uy is controlled by the parameter a. We

study sensitivities of uf and vs with respect to a. The manufactured solution and source terms for the sensitivity

equations are obtained by direct differentiation of Eqs. (60)–(63), (69) and (70).

savm
¼ 2

r2e
r
f	2 sinðaÞ cosðaÞer þ ½cosðaÞ2 	 sinðaÞ2�eyg, (74)

saum
¼ cosðaÞftanh½aðr 	 riÞ� þ tanh½aðre 	 rÞ� 	 tanh½aðre 	 riÞ�gey, (75)

m0f m
¼ 6 sinðaÞ½8 sinðaÞ2 	 5�=½	a tanhð2aÞ2�, (76)

p0
m ¼ 	8 sinðaÞ cosðaÞ½1	 8 sinðaÞ2�. (77)
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Fig. 8. Grid convergence for the flow in a flexible duct.

Fig. 7. Geometry for the flow in a flexible duct.
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To assess the validity of the code, we compare the error estimates (see Section 7) to the true error on Fig. 8. These

results confirm that the scheme is second order accurate for the derivatives of the flow and its sensitivities. Furthermore,

the estimator tends to the true error as the mesh is refined. Thus, the solution improves at each adaptive cycle and the

error estimator becomes sharper and more reliable with mesh adaptation. Quadratic convergence of Newton’s method

is demonstrated in Table 1 which reports the convergence history for the initial and first adaptive meshes. On the initial

grid, the solution is initialized with a zero field. The first adaptive cycle uses interpolation of the solution from the initial

grid onto the adapted mesh.
9.2. Thick cylinder in a uniform cross-flow

We consider the popular test case of flow-induced deformation of an elastic cylinder in a uniform flow (Ghattas and

Li, 1995). The geometry and boundary conditions are depicted on Fig. 9. The cylinder outer diameter d is equal to 1 and

its thickness t ¼ d=10. Its Young modulus E is set to 400 and the Poisson ratio n equals 0.3. The fluid has a density

rf ¼ 1 and viscosity mf ¼ 0:1. The Reynolds number of the flow is 10 for which we assume the solution to be steady on
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Table 1

Convergence history for cycle 0 (initial mesh) starting from zero field and for the first adaptive cycle

Newton iteration Cycle 0 1st adaptive cycle

L2 norm Residuals L2 norm Residuals

1 0:0000 1.636 10.04 0:6189� 10	3

2 12.06 1.227 10.04 0:7523� 10	6

3 7.446 0.1303 10.04 0:1923� 10	11

4 9.137 0:1869� 10	2 10.04 0:2332� 10	14

5 9.356 0:5145� 10	6

6 9.358 0:6751� 10	13

7 9.358 0:2017� 10	14

Fig. 9. Geometry and boundary conditions for a flexible cylinder in a uniform flow.

Fig. 10. Streamlines for the flexible cylinder a uniform flow.
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the deformed configuration. This low value of Re explains the length of the recirculation zone at the rear of the

deformed cylinder as can be observed on Fig. 10. Fig. 11 shows deformed mesh in the fluid and solid regions. The

deformed shape is similar to that obtained by Ghattas and Li (1995). Unfortunately, comparisons are difficult to make

since no numerical data is given in Ghattas and Li (1995). In our case, the value of horizontal deflection of the front of

the cylinder dh is equal to 0:5d � 0:01d, and that of maximum vertical extent dv is of 1:28d � 0:01d.

We now turn our attention to the sensitivity fields. Fig. 12 shows contours of the pressure sensitivities with respect to

mf and E. Fig. 12(a) shows that an increase of the fluid viscosity mf results in an increase of pressure on the front of the
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Fig. 11. Close-up view of the deformed fluid and solid meshes.

(a) (b)

Fig. 12. Sensitivity fields for cylinder in cross flow: (a) S
mf
pf
: sensitivity of fluid pressure with respect to viscosity and (b) SE

pf
: sensitivity

of fluid pressure with respect to Young’s modulus of solid. (Solid lines correspond to positive values and dotted lines to negative

values.)
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cylinder and pressure decrease on the rear half, while Fig. 12(b) indicates that an increase of Young’s modulus E will

result in a decrease of pressure on the stagnation point, an increase near the upper and lower tips, and a decrease in the

rear half. Figs. 13(a) and (b) show sensitivities of the structural and pseudo-solid displacements. The trend is that an

increase in mf will force the cylinder to flatten. Positive values of the x displacement sensitivities on the front, and

negative values on the back confirm the observation.

We now illustrate the use of sensitivities for fast evaluation of the nearby problem. This is performed in an

inexpensive post-processing step and is very useful to designers as it provides a cost-effective tool for answering ‘‘what if

questions’’. Here, for example, we are interested in obtaining an estimate of the cylinder deformed geometry when the
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(a) (b)

Fig. 13. Sensitivity fields for cylinder in cross-flow: (a) S
mf

xs
, S

mf

xps
: sensitivity of x-structural and pseudo-solid displacement with respect

to viscosity and (b) S
mf
Zs
, S

mf
Zps : sensitivity of y-structural and pseudo-solid displacement with respect to viscosity.
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Fig. 14. Cylinder shape sensitivity and uncertainty prediction: (a) fast nearby prediction of deformed shape of cylinder for a 30%

perturbation of mf and (b) shape uncertainty boxes for a 20% uncertainty on Young’s modulus and 30% uncertainty on fluid viscosity.
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fluid viscosity is increased by 30%. We use sensitivity information with respect to mf in a first-order Taylor series to

obtain estimates of the deformed shape

xbðmf 0 þ dmf Þ ¼ xbðmf 0Þ þ
qxb

qmf

dmf , (78)
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ybðmf 0 þ dmf Þ ¼ ybðmf 0Þ þ
qyb

qmf

dmf , (79)

as the viscosity is changed from its nominal value mf 0 ¼ 0:1 to its perturbed state mf 0 þ dmf with dmf ¼ 0:3mf 0. The

geometry of the deformed cylinder for mf 0 ¼ 0:1 is shown as the solid line on Fig. 14(a). The Taylor series extrapolation

agrees very well with the finite element solution obtained with the perturbed value of the viscosity mf ¼ 0:13.
Sensitivities can also be used to perform uncertainty analysis to provide uncertainty bands for the deformed shape of

the cylinder for illustration purposes. Fig. 14(b) shows the uncertainty bands for the deformed shape resulting from a

20% uncertainty on Young’s modulus for the solid and a 30% uncertainty on the fluid viscosity. The uncertainty

cascade must be done with care for the cylinder outer boundary as the displacements form a vector valued function

whose components are constrained by the solid equilibrium (Eq. (11)). An uncertainty dE generates an uncertainty

interval in the direction of ðqxb=qE; qyb=qEÞ, while an uncertainty dmf induces an uncertainty interval in a different

direction ðqxb=qmf ; qyb=qmf Þ. The resulting uncertainty on ðxb; ybÞ takes the form of a parallelogram box centered at

ðxb; ybÞ; see inset on Fig. 14(b). Fig. 14(b) shows the nominal shape of the interface and sample uncertainty boxes the

sides of which are of length la ¼ 2jðqxb=qE; qyb=qEÞdEj, lb ¼ 2jðqxb=qmf ; qyb=qmf Þdmf j. They are almost flat because the

directions for uncertainties induced by Young’s modulus and the viscosity are nearly parallel.
10. Conclusions

In this paper, we have developed a general monolithic formulation for computing the interactions between an

incompressible flow and a hyperelastic solid and their sensitivities. The stationary Navier–Stokes equations are used to

describe the fluid behavior, while a Lagrangian frame and large-displacement large-strain theory is used for the solid. A

pseudo-solid elasticity model is used to handle the deformation of the fluid domain. A variational formulation of the

problem is developed that ensures satisfaction of continuity of interface tractions and velocities. The pseudo-solid also

serves to provide monolithic coupling of all field variables at the interface and throughout the domain. This approach

guarantees quadratic convergence of Newton’s method and avoids fixed point iterations between fluid and solid

problems. The variational formulation is approximated by a Galerkin finite element method resulting in a set of

nonlinear algebraic equations for fluid velocities, pressure, pseudo-solid and solid displacements. The asymptotic

exactness of the adaptive procedure was verified in an adaptive grid refinement study using the method of manufactured

solution. It was then successfully applied to the simulation of an elastic cylinder in a uniform transverse flow. The

physics of the coupled fluid–structure interaction and their sensitivity problems are obtained with high accuracy, thanks

to the adaptive procedure. We have shown two uses of sensitivities, namely the evaluation of nearby solutions and

uncertainty estimation. The sensitivities are also useful for determining which are the key parameters controlling the

behavior of the system. Finally, future developments of the method are to extend this method to unsteady problems and

turbulent flows. Extension to second-order sensitivity analysis is also planned along the lines of Mahieu et al. (2005).
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